import unittest
import numpy as np
import matplotlib.pyplot as plt
-import scipy.signal
+from scipy.signal.windows import gaussian
from numpy.testing import assert_array_equal
from ..steps import (
DivideStep, MultiplyStep, SubtractStep, AddStep, PowerStep,
ZapStep, TruncateStep, NormalizeStep, InterpolateStep,
- SmoothStep, PeakPickStep)
+ SmoothStep, PeakPickStep, BaselineSubtractionStep)
class TestArithmeticSteps(unittest.TestCase):
class TestProcessingSteps(unittest.TestCase):
def test_zap_linear(self):
xlist = [x for x in range(11)]
- ilist = scipy.signal.gaussian(11, 2, True)
+ ilist = gaussian(11, 2, True)
spectrum = np.array([xlist, ilist], dtype='float')
f = ZapStep(2, 8, kind='linear')
result = f(spectrum)
def test_zap_cubic(self):
xlist = [x for x in range(11)]
- ilist = scipy.signal.gaussian(11, 2, True)
+ ilist = gaussian(11, 2, True)
spectrum = np.array([xlist, ilist], dtype='float')
f = ZapStep(2, 8, kind='cubic')
result = f(spectrum)
def test_truncate(self):
xlist = [x for x in range(100)]
- ilist = scipy.signal.gaussian(100, 10, True)
+ ilist = gaussian(100, 10, True)
spectrum = np.array([xlist, ilist], dtype='float')
f = TruncateStep(20, 80)
result = f(spectrum)
def test_normalize(self):
xlist = [x for x in range(100)]
- ilist = np.multiply(scipy.signal.gaussian(100, 10, True), 10.0)
+ ilist = np.multiply(gaussian(100, 10, True), 10.0)
spectrum = np.array([xlist, ilist], dtype='float')
f = NormalizeStep()
result = f(spectrum)